短期・長期停止が予想される貯水槽内でのレジオネラ属菌の生息実態調査

○戸田未希・坂下雅昭・山下重光・脇谷壮太朗(日本水処理工業株式会社)

1. はじめに

昨年の調査において、貯水槽内のスライム・底水中、また給水系統を停止していたあと に採水した検体において、レジオネラ属菌が検出し、給水系統におけるレジオネラ属菌の 危険性は確認された。

本調査では、給水系統の短期・長期停止が予想される学校や竣工現場等にターゲットを 絞り、レジオネラ属菌の実態調査を行い、給水系統におけるレジオネラ属菌検査の重要性 を実証することを目的とする。

2.方法

調査検体については、短期・長期停止が予想される大阪府・兵庫県下の学校・その他公共施設(計 18 施設 44 系統)の貯水槽(受水槽・高置水槽)・末端を対象に調査を行った。

調査対象設備として、有効容量が 10~100m³、停止期間が 1 週間以上、もしくは夏期休暇等で給水使用頻度が減少したものを対象とし、設置場所(屋上/地上置き/室内等)や材質(FRP/SUS等)、水質状況(水温や遊離残留塩素)については、採取時に情報を記録した。

貯水槽においては水垢等の付着による汚染が生じやすい以下の2箇所にて、清掃点検時 に槽内の水を抜いた際に試料を採取した。

- ① 貯水槽壁面の付着物 :壁面の付着物を滅菌ガーゼで拭き取った。
- ② 底部の残留水 : 貯水槽底部の残留水 (500ml) を採取した。

壁面を拭き取ったガーゼは 500mLの滅菌食塩水に浸し、撹拌したものを検液とした。 レジオネラ属菌分析方法については、上水試験法およびレジオネラ症防止指針第 3 版に 準じた。また併せて LAMP 法による遺伝子検査も行った。

3.結果

結果を表1、2に示す。

表 1 より、学校の底部残留水において LAMP 法の検出率が 49%であり、約半数の底部 残留水からレジオネラ属菌が検出していることが分かった。

また表 2 より、高置水槽の LAMP 法の検出率が 41%であることから、受水槽よりも高置水槽の方がレジオネラ属菌の検出率が高いことが分かった。

24. 死物がセレイヤノ南面吸出相木										
		学校(3	9 系統)		その他公共施設(5系統)					
	壁面付着物		應部残留水		壁面付着物		應部残留水			
	検出	検出率	検出	検出率	検出	検出率	検出	検出率		
LAMP 法	6	15%	19	49%	1	20%	0	0%		
培養法	1	3%	2	5%	0	0%	0	0%		
培養法菌数	4.0×10 ²		2.0×10 ² 1.3×10 ⁵		_		_			
(CFU/100mL)										

表 1. 現場別レジオネラ属菌検出結果

表 2 採永場所別レジオネラ属菌輸出結果

大 2. \$6.1. \$6.1. \$7.1. \$7.1. \$7.1. \$1.2.										
	受水槽(39基)				高置水槽(22基)				末端(34箇所)	
	壁面付着物		底部残留水		壁面付着物		底部残留水		末端水	
	検出	検出率	検出	検出率	検出	検出率	検出	検出率	検出	検出率
LAMP 法	7	18%	7	18%	0	0%	9	41%	5	15%
培養法	0	0%	1	3%	1	5%	1	5%	3	9%
培養法菌数	_		2.0×10 ²		4.0×10 ²		1.3×10 ⁵		1.0×10 ³ 1.8×10 ³	
(CFU/100m L)									6.0×10^3	

4. 考察

今回の調査で学校のように、短期・長期にわたって使用頻度が激減する現場の貯水槽においては、壁面付着物、底部残留水のレジオネラ属菌検出率(LAMP 法)が 15%、49% であり、底部残留水では約半数でレジオネラ属菌の検出が確認された。また培養法でも数箇所ではあるが、生菌の検出が確認され、その他末端での検出を含めると、生菌数にバラつきはあるものの $2.0\times10^2\sim1.3\times10^5$ CFU / 100 m L で検出した。しかし今回も前回同様に、貯水槽タンク内部の汚れ具合や見た目、劣化度合いとレジオネラ属菌検出には相関関係は見られなかった。(写真 1)

写真 1. 貯水槽内・外部の写真

左より「高置水槽の通気口破損」、「貯水槽清掃」、「壁面付着物のふき取り採取」の写真 上記写真のように、様々な現場状況とレジオネラ属菌検出には相関性が見られなかった

採水場所ごとの結果では、高置水槽のほうが受水槽よりも検出率が高かった。弊社で清掃時は、持ち込む機材や着用服は消毒したものを使用しているため、洗浄時に汚染することは考えにくい。その他の要因としては解放された通気口などが考えられるが、今回の調査では原因元の追求までは出来なかった。

以上のことから短期・長期にかかわらず、また水温・気温が上がりやすい夏季休暇期間の貯水槽・給水配管については、レジオネラ属菌が繁殖しやすく、レジオネラ症の感染源になりうる可能性が十分ある。また定期的な管理や清掃・点検等が法令で義務化されていない給水施設(=小規模貯水槽水道)も含め、貯水槽の定期的な管理や清掃・点検のほかに、給水停止後の使用開始前、または給水停止期間中にも貯水槽清掃や点検、給水配管消毒、そしてレジオネラ属菌検査を行うことが重要であると考える。

今後の我社の取り組みとして、今回の調査結果をもとに取引先にはもちろん、行政や関係団体での学会発表などを通じて、貯水槽清掃の必要性やレジオネラ属菌分析の重要性について啓発していきたいと考えている。